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We study here a standard next-nearest-neighbor (NNN) model of ballistic growth on
one-and two-dimensional substrates focusing our analysis on the probability distribu-
tion function P(M, L) of the number M of maximal points (i.e., local “peaks”) of
growing surfaces. Our analysis is based on two central results: (i) the proof (presented
here) of the fact that uniform one-dimensional ballistic growth process in the steady
state can be mapped onto “rise-and-descent” sequences in the ensemble of random per-
mutation matrices; and (ii) the fact, established in Ref. [G. Oshanin and R. Voituriez, J.
Phys. A: Math. Gen. 37:6221 (2004)], that different characteristics of “rise-and-descent”
patterns in random permutations can be interpreted in terms of a certain continuous-
space Hammersley-type process. For one-dimensional system we compute P(M, L)
exactly and also present explicit results for the correlation function characterizing the
enveloping surface. For surfaces grown on 2d substrates, we pursue similar approach
considering the ensemble of permutation matrices with long-ranged correlations. De-
termining exactly the first three cumulants of the corresponding distribution function,
we define it in the scaling limit using an expansion in the Edgeworth series, and show
that it converges to a Gaussian function as L — oo.
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1. INTRODUCTION

Within the recent years much effort has been devoted to theoretical analysis of
properties of surfaces obtained by aggregation of particles. Several models de-
scribing various properties of clusters grown by different deposition processes
have been proposed. To name but a few, we mention the famous Kardar—Parisi—
Zhang (KPZ)() and the Edwards—Wilkinson (EW) models, ®) models of surfaces
grown by Molecular Beam Epitaxy (MBE) (see, for example, Ref. 4), Polynuclear
Growth (PNG)®~% and by Ballistic Deposition (BD),(1°~13.19) in which case par-
ticles are sequentially added to a growing surface along ballistic trajectories with
random initial positions and specified direction.

For these models of surface growth, a number of important theoretical
achievements concerning the statistics of extrema has been made. In particular, in
Ref. 3, the distributions of the maximal heights of the 1D Edwards—Wilkinson and
of the KPZ interfaces were determined exactly. In Ref. 6, it was realized that the
height distribution of the PNG surfaces coincides with the so-called Tracy—Widom
distribution,® which appears in the theory of random matrices. In Refs. 14-16,
it has been shown that in the thermodynamic limit BD exhibits the KPZ scaling
behavior. Moreover, a discrete BD model has been shown recently to be a very
convenient tool for studying non-Abelian entanglement properties of braided di-
rected random walks. '® Finally, it has been found that in many models of ballistic
growth, as well as in their continuum-space counterparts belonging to the KPZ
universality class,(!) the average velocity of cluster’s growth is governed by the
density of local minima of the enveloping surface.!”)

In these works the most attention was paid to the study of the statistics of
local heights and corresponding scaling exponents of the enveloping surface. At
the same time, the form of the distribution function of the density of local extrema
(and of'the corresponding moments of the distribution function) is much less inves-
tigated. The moments of the local maxima distribution depend on the microscopic
details of the lattice model under consideration, and, hence, are less universal
characteristics than, say, the roughness exponent. Nevertheless, the investigation
of the distribution function is important for gaining deeper understanding of the
morphological structure of a growing heap. For example, the expectation of the
density of local maxima in the ballistically growing (1+1)D heapis 1/3 = 0.333...
(for L > 1, where L is the size of the surrounding box)—the precise definition
of the model is given below. At the same time, the mean volume density of the
(1+1)D heap is about 0.25 (for L > 1). The last number is obtained in numer-
ical experiment. Yet we have only the qualitative explanations of the difference
between surface and volume densities of the heap and a deeper analysis of this
question seems to us very important and rather intriguing from the physical point
of view.
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In our work we analyze the structure of the enveloping surface in a standard
widely considered next-nearest-neighbor (NNN) model of ballistic growth (141516
on one-and two-dimensional substrates. This model is known in the literature since
many years and is recognized as a very convenient and simple lattice model which
catches many basic properties of randomly growing substrates. Interpreting this
model in terms of permutations of the set 1,2, 3, ..., L, where L is the number
of lattice sites and the numbers drawn at random from this set determine local
heights of the surface, we calculate the Probability Distribution Function (PDF)
of the number of maximal points (i.e., local “peaks”). Our analysis is based on
two central results:

(i) A proof, presented in this paper, of the fact that a ballistic growth process
in the steady state can be formulated exactly in terms of a “rise-and-descent”
pattern in the ensemble of random permutation matrices;

(il) An observation made in Ref. 24, that the “rise-and-descent” patterns
can be treated efficiently using a recently proposed algorithm of a Permutation
Generated Random Walk.

We remark that the expected value and the variance of the number of lo-
cal peaks in surfaces grown by ballistic deposition on a one-dimensional and on a
two-dimensional honeycomb lattices have been already calculated by J. Desbois in
Ref. 20, using a certain decoupling of the hierarchy of coupled differential equa-
tions describing evolution of the moments of higher order. This method provides
correct results for the first two moments of the distribution function and, appar-
ently, may be extended further for the calculation of higher moments by truncation
ofthe higher level correlations. However, this approach is not completely rigorous.
Our approach, on contrary, is mathematically exact, does not rely on any uncon-
trollable assumption and enables us to go beyond the results obtained in Ref. 20.
In particular, in one dimension we calculate a complete distribution function of the
number of local peaks exactly. Apart of that, we also present explicit results for the
correlation functions characterizing the enveloping surface. For surfaces emerging
in two-dimensional ballistic growth, we reduce the problem to the analysis of the
ensemble of permutation matrices with long-ranged correlations. Determining ex-
actly the first three cumulants of the corresponding PDF, we obtain the distribution
function in the scaling limit using expansions in the Edgeworth series.

The paper is outlined as follows. In Sec. 2 we formulate our models in one-
and two-dimensions, discuss, on an intuitive level, a relation between a sequential
growth of patterns in ballistic aggregation and “dynamics” on permutations, and
finally present the main results of this work. Section 3 is devoted to a rigorous de-
scription of the relation between ballistic deposition and an “updating” dynamics
on permutations. Further on, in Sec. 4 we analyze the probability distribution func-
tion of the number of local peaks on one-dimensional substrates. Here, we briefly
outline the well-known results of Stembridge on the peak numbers, ") describe the
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model and basic results obtained for the so-called Permutation Generated Random
Walks ®® and show how the operator formalism developed in this work can be ex-
tended for the calculation of the moments of the probability distribution function.
Next, in Sec. 5 we present a derivation of an explicit expression of the probability
of having two local surface peaks at distance / apart of each other (such that there
is no peaks inbetween). In Sec. 6 we focus on two-dimensional situation and show
how our previous analysis can be extended to this case. We calculate exactly first
three cumulants of the corresponding probability distribution function of having
M peaks on a square lattice containing L sites and then, using an expansion in
the Edgeworth series, show that this function converges to a Gaussian as L — oo.
Finally, in Sec. 7 we conclude with a brief summary of our results.

2. MODELS, DEFINITIONS AND MAIN RESULTS
2.1. Surfaces in Standard Ballistic Growth Process

A standard one-dimensional ballistic deposition model with next-nearest-
neighboring (NNN) interactions is formulated as follows (for more details, see
Refs. 14-16). Consider abox divided in L columns (of unit width each) enumerated
by index i (i =1,2,...,L). For simplicity, we assume the periodic boundary
conditions, such that the leftmost and the rightmost columns are neighbors.

At the initial time moment, (» = 0), the system is deemed empty. Then, at
each tick of the clock,n = 1,2, ..., N, we deposit an elementary cell (“particle”)
of unit height and width in a randomly chosen column. Suppose that the distribution
on the set of columns is uniform. Define the height, /(i, n), in the column 7 at time
moment z. Assume now, as it is depicted in Fig. 1, that the cells in the nearest-
neighboring columns interact in such a way that they can only touch each other by
corners, but never by their vertical sides. This implies that after having deposited
a particle to the column 7, the height of this column is modified according to the
following rule:

h(i,n 4+ 1) =max{h(i — 1,n), h(i,n), h(i + 1,n)} + 1. (1)

If at the time moment n nothing is added to the column i, its height remains
unchanged: A(i,n + 1) = h(i,n). A set of deposited particles forms a pile as
shown in Fig. la for L = 6 columns and N = 6 particles. Here, for example,
h(1,6) =1, h(2,6) = 2, etc.

Now, we call the local maxima of the pile as the “peaks.”” More specif-
ically, take the set H of heights at some time moment n: H = {h(l,n),
h(2,n), ..., h(L, n)}. We say that the column i contains a “peak” at time moment
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Fig. 1. Sequential growth of a heap in the ballistic deposition process.

n if the height of this column satisfies the following two-sided inequality:

!h(i,n) > h(i —1,n)

2
h(i,n) > h(i + 1, n). @)

Note that in Fig. la,b there are two peaks situated in the columns i = 3 and
i = 5 and in Fig. lc there is only one peak situated in the columns i = 4. The
collection of peaks 7 is the subset of H and forms the “roof”—the set of upmost
(or “removable””) particles. In Fig. 1 peaks are denoted by gray squares and other
particles—by white ones. The relation of this ballistic deposition process with
the “updating dynamics” on permutations is schematically depicted in Fig. 2. We
briefly describe it below in Subsection B and in the Sec. 3 in more detail.

In a similar fashion, the process of a two-dimensional ballistic deposition
in a box with a square base L = m x m, (m is an integer), can be viewed as a
sequential adding of elementary cubes in the columns satisfying the following
rules (compare to (1)):

h(i, j,n+1) = max{h(i — 1, j,n), h(i + 1, j, n), h(i, j, n),
h(i, j—1,n), h(i, j +1,n)} + 1, (3)

where A (i, j, n) is the height of the column with coordinates (i, j) (1 < {7, j} < m)
at deposition moment n (1 < n < N). The cubes are added to the columns with
the uniform distribution—see Fig. 3.

The “peak” of a two-dimensional landscape A4(i, j, n) is defined as a lo-
cal maximum in the set {A(i, j, n)} for some fixed moment #, if the following

7Only the particle of the roof 7 can be removed from the pile without disturbing the rest of the
heap—as in the mikado game.
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Fig. 2. An “updating dynamics” on permutations.

conditions are simultaneously fulfilled:
h(i, j,n) > h(i —1, j,n)
h(i, j,n) > h(i + 1, j, n)
h(i, j,n) > h(i, j —1,n)
h(i, j,n) > h(i, j+1,n)

4)

Let us note that (3)—(4) assume periodic boundary conditions both in 7 and j
coordinates (1 < {i, j} < m). The influence of the boundary condition on the
expectation, variance and higher moments of peak numbers can be easily estimated
and becomes negligible in the limit m — oo.

For these models, our goal is to evaluate the probability distribution function
P(M, L) of having M peaks on a lattice containing L sites. As we proceed to
show, in one-dimension this can be done exactly. Moreover, we are also able to
calculate the “correlation function” p(/) defining the conditional probability that
two peaks are separated by the interval / under the condition that the interval /
does not contain peaks. In 2d, determining exactly first three cumulants of the PDF
we define it in the scaling limit using expansion in the Edgeworth series and show
that it converges to a Gaussian function as L — oo.

j\_ﬁ [

[
l\\ [

Fig. 3. Two-dimensional ballistic deposition and corresponding random landscape.
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2.2. Interpretation of Ballistic Growth: “Updating Dynamics”
and Random Permutations of Natural Series

Let us emphasize that we are interested only in the statistics of peaks of a
growing surface in the stationary state and disregard any questions concerning
the statistics of heights.

Dynamics of the set of peaks 7 in the ballistic deposition process depicted
in Fig. 1 can be mapped onto the dynamics of “peaks” in the permutation matrix.
We start by describing this connection on an intuitive level. To do this, let us
proceed recursively. Suppose that we deposit a first particle in the column i; of
an L-column box. Next, take the row of L elements with “1” at position i; and

i—1
“0” in all other places: (0, ...,0, 1,0, ..., 0). After dropping the second particle,
ip—1

say, in the column i;, take a row (0,...,0,1,0,...,0) and place it over the first
one creating a stack. Suppose that at some time »n a new particle is added to
the column which was occupied earlier, say, at time m, i.e. i, =i, (n > m). It
means that we have two identical rows in the stack. In this case, we remove the
first of identical rows (i.e. deposited at time m) from the stack and eliminate the
empty line by pulling down all rows deposited after time m, as it is depicted
in Fig. 2d. After some time, the stack will comprise L rows and, according to
the described procedure, will not grow anymore but will be changed only due to
updating of rows (by adding the new ones and by eliminating the old ones). By
construction, this stack is an L x L permutation matrix. Connecting the nonzero
elements in nearest-neighboring rows by a broken line, we can straightforwardly
define the “descents,” “rises” and “peaks” in the permutation matrix—see Fig. 2c.
The number of peaks at time N in the L x L permutation matrix coincides then
with the number of peaks in the heap after having deposited N particles in a box
of L columns. The rigorous proof of this mapping is given in the Sec. 3.

Consequently, the described relation between the original ballistic deposi-
tion model and an “updating” dynamics on permutations, depicted in Fig. 2c,d,
allows us to view the characteristics of the surface obtained within the BD pro-
cess from a different perspective: Consider, for example, a one-dimensional lat-
tice containing L sites, on which we distribute numbers drawn randomly from
the set 1,2,3,..., L. A number appearing at the site j determines the local
“height™® of the surface. Now, we call this site as “a peak,” if the number ap-
pearing on this site is bigger than the numbers on two neighboring sites—see
Fig. 4. Generalization to two-dimensional square lattice with L = m x m, (m is

8 Note that the “heights” appearing in permutation matrices have nothing to do with real heights in the
original BD growth model.
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Fig. 4. (a) One-dimensional (L = 6) and (b) two-dimensional square (L = 4 x 4) lattices with periodic
boundary conditions on sites of which we distribute numbers drawn from the set 1,2, 3, ..., L. These
numbers determine the local heights of the surface. The sites with numbers bigger than those appearing
on the neighboring sites are refereed to as the “peaks.”

an integer) sites is straightforward—see Fig. 4b: the only difference here is that
we call as local “surface peaks” such sites j the numbers at which are bigger than
numbers appearing at four adjacent sites. We prove rigorously in what follows that
the probability of having M peaks on a lattice containing L sites on which we place
numbers randomly drawn from the set 1, 2, 3, ..., L, and the distribution function
P(M, L) characterizing the number of local surface maxima in the surfaces of
aggregates grown within the BD process, are identic. We note finally that the peak
statistics in the latter model with natural numbers 1,2, 3, ..., L and in a related
model with a lattice on sites of which one places randomly numbers uniformly
distributed in [0,1] has very interesting and unexpected features, as was recently
communicated to us by B. Derrida.!”

2.3. Main Results
Main results of this work are as follows:

(i) We prove that a uniform one-dimensional ballistic growth process in the
steady state can be mapped onto the “rise-and-descent” sequences in the
ensemble of random permutation matrices.

(ii) We show that in one dimension the probability distribution function
P(M, L) can be calculated exactly through its generating function

W(s,Ly=L!Y s""P(M, L) (5)
M=0
where
B s Ny SRy A
W(S, L) = <ﬁ> pa (S A(M, L) (6)

with A(M, L) being the so-called Eulerian numbers counting the number
of “rises” (or “descents”) in the ensemble of equally weighted permutation
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(iii)

(iv)

matrices of size L:
M L+1
AM, L) = Z(—l)( N )(M—r) )
r=0

where (Z) denotes the binomial coefﬁcient here and henceforth we adopt a
standard notation when (j) = 3“5 b for0<b<a and( ) = O otherwise.
Inverting (5), we find the followmg exact expression for P(M, L):

oL+2 M % ! ml+
P(M,L)= Z( ( ) Zl a—mid+m) (8)

In the limit L — oo, the PDF P(M, L) converges to a Gaussian distribu-

tion:
3 [5 45(M — 1Ly’

Note that a similar result has been previously found in Ref. 24 for the sum
of peaks and throughs in a permutation of length L within the context of
the number of the U-turns made by the “Permutation Generated Random
Walk” (PGRW).

We show that in one-dimensional systems the probability p(/) of having
two peaks separated by the interval / under the condition that this interval
does not contain other peaks, obeys:

S =D +2)
(I +3)!

p) =

Curiously enough, this expression coincides with the distribution function
of the distance between two “weak” bonds obtained by Derrida and Gardner
@7) in their analysis of the number of metastable states in a one-dimensional
random Ising spin glass at zero’s temperature.

Using the cumulant expansion, we show that in two dimensions, in the
limit L — oo, the normalized probability distribution function p(x, L),
where x = (M — u3P) /o, converges to a Gaussian distribution

( _M_—M%D L) ! —x2/2<1+Lf()+ (L))
ply=—1r": me i x)+o 7))

where

2D

f(x) = VI —3

e
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where the cumulants, «?°, coincide with the central moments, u?°, (i =
1, 2, 3). The last ones are as follows:

1
2D
3
1231 5
13
o _ 2 _ 19
M =9 =335
512
2D __
= 35175

We have realized that local peaks in one-and two-dimensional equilibrium
NNN ballistic deposition model are correlated and the correlation length
extends over two lattice spacings: while by definition, the probability of
having two peaks at the neighboring sites is zero, appearance of two peaks
on next-nearest-neighboring sites (also on a diagonal for 2d) is higher than
squared mean density of peaks (1/9 and 1/25 in 1d and 2d, respectively).
On contrary, the probability of having two peaks at a distance exceeding
two lattice spacings is equal to the squared mean density, which signifies
that they are uncorrelated. In other words, there are effective short-range
“attractive” interactions between peaks. The corresponding weights of a
few typical configurations are summarized in Fig. 5.

3. RIGOROUS DESCRIPTION OF THE RELATION BETWEEN
“UPDATING DYNAMICS” ON PERMUTATIONS AND BD

As we have already mentioned in the previous section, dynamics of the set of
peaks 7 in the ballistic deposition process depicted in Fig. 2 can be mapped onto
the dynamics of “peaks” in the permutation matrix. Let us formulate this mapping
explicitly.

In a more rigorous approach, we have to consider two dynamical systems:
one—on peak sets and the other-on permutations. Let us call E; the operation
which corresponds to dropping a box in the column i on a peak set. That is if S is
a peak set (i.e. a subset of {1, ..., L} without two consecutive numbers) then

E/(S):=SU{i}/{i —1,i +1}. (10)

The corresponding operation F; on permutations is defined by

o (k) ifo(k) <o(i)
u:=F(o) with uk):=41L ifk=i (11D
ok)y—1 ifo(k) > o(i)
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One-Dimensional System Two—Dimensional System
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H

Fig. 5. Probabilities of having a single peak and a pair of isolated peaks some distance apart from each
other in one-and two-dimensional models. Filled circles denote peaks—sites with numbers exceeding
numbers appearing on nearest-neighboring sites. First column presents probabilities of several con-
figurations in 1d, while the second one describes the probabilities of a few possible configurations
appearing in two dimensions.

To proceed, we also need to define the reverse operation on permutations, Ry,
which removes the upmost row and inserts it under the row :

o(l) ifo(l) <k
wi=Ri(c) with wu(l):= 1k ifo(l)=1L (12)
oh)+1 ifL>0()>k
It is clear now that F;(0) = w if and only if R;(uu) = o where k = o (i) is the row
of the 1 in the column ;.

Denote now by Peak(o) the peak set of the permutation o. Then, it is obvious
that for all permutation o

E;(Peak(c)) = Peak(F;(0)) foralli <L. (13)

This simple but crucial observation allows us to translate the dynamics on per-
mutations to the dynamics of peak sets. We will proceed in two steps: first, we
will show that the limit probability measure of the dynamical system on permu-
tations is equi-distributed and second, we will demonstrate that the image of this
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probability measure by the peak-set map is the limit probability measure on peak
sets.

Let (P(0)), be a probability measure on permutations. Then, after one uni-
formly random chosen step F; the new probability P’(i) of a permutation p
is

/ 1 -
Pm—L;EPm (14)
where the inner sum extends over the sets of all permutations o, such that F;(o) =
w. However, by definition of F}, if a permutation t is of the form T = F;(o) then
7(i) = L. Thus in the previous sum the only value of i such that there exists some
o such that Fj(o) = wis i = u~'(L), that is if i is the column where the 1 is in
the top row L in w. Now, here are exactly L permutations o verifying F;(o) = u,
namely Ri(u) for k = 1...L. Consequently, P'(1) is simply the average of the
probabilities of the R;(w):

1 L
P(u) =+ > P(Re(1). (15)
k=1

Moreover, it is clear that for all pairs of permutations o, u there is a sequence (i, ),
of transformations which maps o on u, thatis u = ... F;, F;, F;, (o). Consequently,
the map F : P — P’ is an irreducible Perron-Frobenius map whose maximal
module eigenvalue is 1 with multiplicity 1. Thus, when the number of boxes tends
to infinity, the probability converges to some limit and this limit is the unique,
normalized (the sum of the coordinate is 1) eigenvector of F' corresponding to
the eigenvalue 1. In virtue of (15), the uniform distribution on permutations is
preserved by F so that it must be the limit distribution.

Using (13), it is possible to translate our permutations language to the lan-
guage of the peak sets. Recall that we call a peak set any subset of {1, ..., L}
without two consecutive numbers. The only needed remark is that any non empty
peak set S is the peak set of a permutation. Thus the map Peak extends to a
surjective map from the set of probability measure on permutations to the set of
probability measures on peak sets:

Peak : P —> Peak(P)(S):= > P(0). (16)
o : Peak(o)=S

Denote next £ the map P(S) +> P’(S) where P’(S) is the new probability measure
on sets after a uniformly random step E;. Then (13) can be written down as

E(Peak(P)) = Peak(F(P)), (17)

for all probability measures on permutations P. In particular, the spectrum of £ is
included in the spectrum of F' and moreover, the generalized eigenspaces (kernel
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of (F — AI)" for m large) of E are the image under Peak of the generalized
eigenspaces of F. Consequently, £ is a Perron-Frobenius map with maximal
module eigenvalue 1 with multiplicity 1. As a consequence the limit distribution
on peak sets exists and is the image by the map Peak of the limit distribution on
permutations

Pini(5) = Peak (Pini(0))(5) = . #o | Peak(o) =S} (18)

Before we proceed further, a few comments might be in order:

First, as a matter of fact, this technique is quite general and can be applied
to a more general notion of heaps of pieces. We demonstrate it on the following
example. Let G = (V, E) be a finite oriented simple graph with vertex and edge
set V and E and let L be the number of vertices. Each vertex v € V is associated
with one “type” of pieces, and an arrow e = v — v’ encodes the fact that when a
piece of type v falls after a piece of type v/, then it is placed over it, thus they are no
more pieces of type v’ at the top of the pile. The notion of permutation generalizes
to the notion of standard labelling of the vertex of the graph, that is assignation of
distinct numbers from 1 ... L to the vertices v. Then a vertex v is called a peak of
a labelling / if /(v) > [(v’) for all edges v + v’. One immediately notices that the
previous reasoning applies, which implies that for all sets S of vertices the limit
probability measure Pjinit(S) of S to be exactly the set of maximal pieces of a
random heaps on the graph G is given by (18). In this regard, the limit distribution
of the 2D models can also be computed using these generalized peaks. Moreover,
in the case of the oriented lines the notion of peaks reduces to the notion of a
descents.

Second, combinatorics of peaks of permutations has been recently reviewed
by J. Stembridge in Ref. 21. The peak algebra of Stembridge is a certain sub-
algebra of the algebra of polynomials with infinitely many variables. It has a
natural basis Ky indexed by peak sets S and therefore can serve as the support for
generating series of probability of a peak set. In this regard, the generating series
of the probability of each peak set has a very simple expression

00 0o
Yorh Y PS)Ks=) % Y~ #{o|Peak(o) = S} K5 = exp(K1f)
L=0  Sc{l..L) L=0 " Sc{l..L)

19)
where K is the unique peak set where L = 1. Note that there is a minor difference
between our work and Ref. 21, since in the latter the extremities 1 and L were
never considered as a peak, while we use the periodic boundary conditions. This
difference should be unimportant for sufficiently large L.

Furthermore it should be noticed that in Ref. 23, a different random
walk is considered on peaks and conjectured on permutations with the same
limit probability measure. Finally, the result of Ref. 22, suggests that this
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measure should be seen as some kind of generalized Plancherel measure as-
sociated with the degenerated Hecke-Clifford algebra instead of the symmetric

group.

4. PROBABILITY DISTRIBUTION FUNCTION P(M,L) IN 1D

We are now in position to determine exactly the probability P(M, L) that a
random heap has a fixed number of peaks. From our previous analysis, it follows
that such a probability is equal to the number B(M, L) of permutations of length
L having exactly M peaks, divided by the total number of permutations L!, i.e.
P(M,L)= B(M, L)/L!. Now, we recollect that if one considers permutation
descents instead of peaks, the numbers 4(M, L) of permutations of 1... L with
exactly M descents are known as the Eulerian numbers, obey the following three-
site recursion

AM, Ly=(L -M+D)AM—1,L — 1)+ MAM,L—1)  (20)

which leads to the following recurrence relation for the generating function
U(t, L)y = Y5 _otM 4M, L):

U, 1) = t, U@Lﬁnﬂ—ﬂ%U&L—D+UU@L—D. Q1)

The recursion relation for peak-Eulerian number B(M, L) has been consid-
ered by Stembridge in Ref. 21, Remark 4.8. In our notations, his results attains the
following form

B(M,L)y=(L—2M+2)B(M —1,L —1)+2M B(M, L — 1) (22)

which in turn can be encoded by the recurrence relation obeyed by the generating
series W(s, L) =Y 3 _os™ ' B(M, L) (note that compared to Stembridge there
is no s¥*! term):

W(s, 1) =s, M&mzma—w%W@L—u+mme—n.aa
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Here is a table of a few first polynomials W (s, L):
W(s,1)=s
W(s,2)=2s
W(s,3) =2s>+4s
W(s,4) = 165>+ 8s
W(s,5) = 165>+ 885>+ 16+ (24)
W(s,6) =272 4+4165> +32s
W(s,7) = 272s* 4+ 2880s> + 1824 5% + 645
W (s, 8) = 7936 5% 4 24576 5> + 7680 5% + 128 s
W(s,9) = 793655 + 1372165* 4+ 185856 5> + 3161652 + 2565

Differentiating polynomials W (s, L) and setting s = 1, we can find, in principle,
any moments of the probability distribution function. For example, the expectation

of the number of peaks is LT“ for L > 2; the variance is % for L > 4, while

the third central moment is equal to —% for L > 8.

4.1. Permutation Generated Random Walks

In this subsection we briefly outline the basic notions concerning the so-called
Permutation Generated Random Walk (PGRW) proposed in Ref. 24. Consider a
given permutation 7w = {my, 7, 73, ..., 7} of [L+1]1=1,2,3,...,L +1
and rewrite it as a 2-line table:

( 1 2 3 .. L+1 )
T = .
Ty Ty T3 ... T +1
Suppose that this table assigns some discrete “time” variable j (j =
1,2,.3,..., L + 1, upper line in the table) to each permutation encountered in the
second line and, hence, allows to order this permutation.

Now, in a standard notation, we call j the “rise,” if 7; < 7,1, otherwise, if
7; > 741, we refer to it as the “descent.” Further on, if we have simultaneously
wi_1 <mjandw; > m;_;, we call j - the “peak.”

Then, the Permutation Generated Random Walk is defined by the following
recursive procedure:

(1) attime moment j = 0 the walker is at the origin;
(ii) at time j > 0 the walker makes a step to the right if ; is the rise, and
makes a step to the left if j is the descent.
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Note that, evidently, if j is a peak, the walker makes a left “U-turn.”

Statistical properties of the PGRW were studied in Ref. 24, where the distribu-
tion of the end-to-end distance and intermediate points of the trajectory, probability
measure of different trajectories, the number of U-turns, as well as various corre-
lation functions have been analyzed with respect to the uniform measure on the
ensemble of random permutations.

Using the methods developed in Ref. 24, and exploiting the connection be-
tween the one-dimensional ballistic deposition process and dynamics on permuta-
tions established in the previous section, one can straightforwardly reconstruct the
probability distribution P(M, L) of having M peaks in the uniform ballistic depo-
sition process in the planar box composed of L columns in the stationary regime.
According to Ref. 21, the generating function of number of peaks W (s, L) can be
expressed in terms of the generating function of the number of rises, U(¢, L), in
the ensemble of equally weighted permutation matrices of size L (the so-called
Eulerian number), Eq. (7). The explicit relation between W(s, L) and U(t, L) is:

2 L+1
W(s,L)= (1—+t> U(t, L) (25)
where
SZL; t:2—s—2«/1—s:(1—«/1—s)2 26)
(14 ¢)? s s

Taking into account the identity established in Ref. 24:
2L % /sinx\L+]
AM, L) = —/ (—) cos(x(2M — L — 1)), 27)
g 0 X

we arrive at the following explicit expression for the generating function W(s, L):

9 L+1 oo
W(s, L) = <l_+t> > M AM, L)
M=0

2L+ OOd sinx\ L+!
_n(1+t)L+1/ x( x )
0

efix(L+l)t 1+ eZix(3+L) t — eZix(ZJrL) _ eZix
x (( A ). ) (28)
(1 + e4lx)t _ eth(l + 12)

with 7 given by (26). Polynomials W (s, L) admit also another useful representation
directly following from the relations between generating functions W (s, L) and
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0125 T T T T T T T T
e Exact distribution P(M,L=90)
Gaussian approximation
0,20 | 4
0,15+ _ o
2 :
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log M
0,00 | .
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M

Fig. 6. Exact distribution function (8) (e) and its Gaussian approximation (9) (line) for L = 90. For
better resolution the same results are shown in the insert in log-log scale.

U(t, L) found in Ref. 21:

W(s, L) =21 — )LL) < (29)

(1—1—s)
s
where Li, (x) is the Poly-log function.

Exact expression for the distribution function P(M, L) obtained from (29) is
given by Eq. (8). More details on its derivation are presented in the appendix. In
the asymptotic limit L >> 1 the double sum (8) converges to a Gaussian function
with a nonzero mean (9)—see Fig. 6.

Calculating the first three central moments of the limiting distribution
function in Gaussian approximation (9) for L > 1, we get:

L
1
1D
= MPM,L)= -L,
231 MX::l ( ) 3

1D _ _ 2 _3 (30)
Wi = (M = )P) = L,

u3? = (M —(M)y’) = 0.
Note that the first two expressions coincide with the expectation and the variance

computed by J. Desbois in Ref. 20, using decoupling of the hierarchy of
correlation functions. The third central moment, i.e. uéD, of the distribution
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P(M, L), naturally turns to be equal to 0 since the Gaussian limit is considered.
In what follows we proceed to show using the method of the correlation functions
(see the next Section for details) that all moments of the distribution may
be calculated exactly, for arbitrary finite L. As a matter of fact, the value of
/,L%D is

2 L 31
945"’ 3D

i.e. it is not zero and grows linearly with the system size L due to large deviations
which are not taken into account in the Gaussian approximation. The value of uéD
coincides with the one computed using the generating function in (24) or (28).

P = (M — (M))*) = —

4.2. Correlation Functions of the PGRW within
the Operator Formalism

In Ref. 24, it has been shown that a non-Markovian PGRW can be effectively
described using an auxiliary, recursively constructed Markovian process, which
has the same distribution as the PGRW. Employing the ideas of Hammersley ¥
(see also Ref. 29, for more details), who has used such an approach in his cele-
brated analysis of the problem of the longest increasing subsequence in random
permutations, the following random walk model has been constructed:

® Suppose one has an infinite in both directions line of integers and a random
walker initially at the origin;

e Trajectory ¥; of this auxiliary process is built step by step: at time moment
[ define a real-valued random variable x;, having a uniform distribution
in [0, 1]. If x;4; > x; the walker is moved to the right, i.e. ¥; = ¥;_; + 1;
otherwise, it goes to the left, i.e. ¥; = ¥;_; — 1. At the next time moment,
chose x;4,, compare it with x;, | and move the walker accordingly, and etc.

Two strong results have been proven in Ref. 24, concerning the relation
between this recursively constructed Markovian process and the PGRW: First of
all, it has been shown that the probability P(Y; = X) for the trajectory Y, of the
auxiliary process to appear at site X at time moment L is equal to the probability
P(X (LL) = X) for the end-point X(LL) of the PGRW trajectory XfL) generated by a
given permutation of [L + 1] to appear at site X. This signifies that

U—&D“ﬂA<X+L—RL>
2L1 2

(Recall that A(...) is the Eulerian number).
Second, it has been proven that the probability P(X?L) = X) for the PGRW
trajectory X;L) at intermediate time moment/ = 1, 2, 3, ..., L to appear at site X

P(Y, = X) =

(32)
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is equal to the probability P(Y; = X) for the trajectory of the auxiliary process Y;
to appear at time moment / at site X. That is,

P(X” =X) = Pt =X) = P(X]" = X)
(1 —(—1)X+’)A(X+l—1 1)

20! 2 (33)
which signifies that distribution of any intermediate point X,(L) of the PGRW
trajectory generated by permutations of a sequence of length L + 1 depends on /
but is independent of L.

Using this equivalence, it is thus possible to write down explicitly the proba-
bility measure of any given PGRW trajectory (or of some part of it) as a chain of
iterated integrals over real-valued random variables x;. Recollecting the definition
of the PGRW and noticing that each trajectory mirrors one-by-one a unique “rise-
and-descent” sequence in a random permutation, we are thus able to represent a
probability of any “rise-and-descent” sequence as a chain of iterated integrals over
real-valued random variables x; uniformly distributed in [0, 1].

More specifically, following Ref. 24, consider a given “rise-and-descent”
sequence (L) of length L of the form:

1 2 3 .. L
a(l) = .

a, a; a3 ... dg
where a; can take either of two symbolic values: 4 or . Consequently, the first line
in the table is the running index / which indicates position along the permutation,
while the second line shows what we have at this position—a rise or a descent.
Assign next to each symbol at position / an integral operator; for a rise (1) it is
1;(1), while for a descent ({) it will be /;({), where

1 X1
i) = / dv, and D(})= /0 dx;. (34)

To each L-step trajectory one associates next a characteristic polynomial
O(x, a(L)) defined as an “ordered” product: ?*

L

O, a(L) =] | dia- 1, (35)

I=1

where @; = {1, |} for I =1,..., L. The statistical weight, i.e. the probability
distribution function, P(«(L)), of this given “rise-and-descent” sequence «(L) in
the ensemble of all equally likely permutations is then simply given by

1
P(a(L)) = /0 O(x, a(L))dx. (36)
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It may be expedient to illustrate this formal representation on a particular
example. Consider, e.g., a given “rise-and-descent” sequence of the form {1, 1, |,
1, 1}. For this sequence, the characteristic polynomial Q(x, «(5)) reads:

O(x, a(5)) = I1(1) L(1) () Ia(1) Is(1) - 1

1 1 X 1 1
Z/ dX]/ dX2/ dX3/ dX4/ de -1
X X1 0 X3 X4
3 x n ¥ xt n x3

40 8 12 24 120
and, hence, the probability of this particular configuration is

! 19

Pas) = [ o a(sndr = .

We note that construction of the probability measure in (34)-(36) can be

most easily understood by considering the following example. Suppose there

are three “markers” representing the particles with the coordinates x;, x,, x3

(0 < {x1, x2, x3} < l)—see Fig. 7. Markers in Fig. 7 can be independently de-

posited in the interval [0, 1] with uniform distribution. It is obvious that the

probability P(4 |) for three particles to create a peak, is defined by the probability
of a configuration with 0 < x; < x; and x, > x3 < 1. Thus,

1 1 X2 1
P(T\L)Z/ dX3/ dXQ/ dxl-lzg,
0 X3 0

what coincides with the operator expression

1 ~ ~
POt L) = /0 Lt by dx.

(compare to (34)—(35)).

Fig. 7. Three markers creating a peak configuration.
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4.3. Exact Calculation of the First Three Central Moments of the
Distribution P(M,L) in 1d

Now we apply the operator formalism for the computation of three first central
moments of the probability distribution function, P(M, L), of having M peaks on
a one-dimensional periodic lattice of size L:

ui® = (M),
1y = (M%) — (M)?, (37)
u3P = (M%) = 3(M)(M?) +2(M)°.

Let us introduce

A; = 9()(,‘ — x,-_l) and Az+ = B(xi — xi+1), (38)
fori =1,..., L, where 6(x) is the Heaviside step-function
1 forx >0,
O(x) =
0 forx <0.

Because of the periodic boundary conditions we have A| = 6(x; — x.) and
AT = 6(x; — x1). Using the operator formalism we can represent the expectation
wiP in the following form

1 pl 1[ L
MiD:/O /0 fo [ZA;A;’:| dxydx; ... dxp. (39)
i=1

In the sum above each term A A;L = 0(x; — x;_1)0(x; — x;41) corresponds to the
peak at the position x;. All L terms in the sum in (39) are identical and independent,
s0 it is possible to rewrite (39) as

1
1 1
wP = L/ / /9()6[ —x;i—1)0(x; — xjp1)dx; 1 dx; dx; 1
o Jo
0

1 X; X; 1
= L/ |:/ / dx,-_1 dxi+1:| dx,- =—L. (40)
o LJo Jo 3
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The second central moment 141P can be calculated as follows

uiD _ / / |:ZZA A+A A+ {5(xq4 —xb)}:| dxidxy...dxp — *Lz

i=1 j=1
1

L 1
1
=LYy [/ / TATAT AT {8(x —x,,)}} dx;_y dx; dx;y1dxj_ydx;dxjy — §L2
0
0

=1

& 1
L [ alP o _ L] ,
9
r=0
(41)

where the notation {§(x, — x;)} means the following: if some point x, €
{xi_1, Xi, xiy1} coincides with another point x; € {x;_1, x;, x;11}, then {8(x, —
xp)} = 1 otherwise {8(x, — x;)} = 0 and we sum over all configurations of dia-
grams shown in Fig. 8a. For example, if in some configuration the points x;; and
x; coincide, then {8(x, — xj)} = 8(x;4+1 — x;) etc. The value J'P is the integral of
the diagram r, a!P is the “weight” of the corresponding diagram (i.e. the number
of identical diagrams). The graphic representation of integrals in Eq. (41) is given
in Fig. 8a. We consider the system of length L with periodic boundary conditions.
Instead of summing over L possible values of i we fix some arbitrary value x; and
perform averaging over all possible positions of x;. That gives us L in front of the
sum in (41). The integral in (41) depends on j — i only. We enumerate all possible
values of the integral by the index r, and compute the weight a'P of each integral
J!P in the sum for j = 1,2, ..., L.

The total number of d1agrams is normalized: Zr _oa!? = L. The computed
values of J!P and of a!P are collected in the Table 1. All such configurations are
generated by shifting the point x; with respect to x; as shown in Fig. 8a,b.

If the shortest distance between x; and x; is larger than 2 (respecting the
periodic boundary conditions), then the integrals over A; A and A7 A}* decou-

ple and give J|P [P(T WP =1x1=4 The contribution of these integrals

cancels by subtracting & 5- The number of such integrals is a;° = L — 5. The total
number of all other configurations is finite and does not depend on L, so the second
central moment is proportional to L but no to L?. Substituting the values from

Tablel. Values of diagrams J!" and
of the corresponding weights a!P
for computing uiP.

~

(=]
—_
[\
w2

e
— =

{
N —
o
[\S}
~ o~
|
w
[\S}
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(a) 2-point correlations in 1D (b) 3-point correlations in 1D

Xp Xy

Fig. 8. Basic diagrams and corresponding integrals: a) J,ID for the computation of M;D; b) GrlD for
the computation of ;,L;D.

the Table 1 into (41), we arrive at the following expression for the second central
moment )P

2

3
1
1D 1D y1D
=1L E J o —=-L|=—L. 42
& r=0 “ ' 9 45 ( )

To calculate the third central moment 41P,
WP = (M — (M))*) = (M3) — (M)* = 3(M)((M?) — (M)?),  (43)

we proceed exactly along the same lines as above. The averaged third power of M is

1 1 L L L
<M3>=/0 fo SO ATATATATACAT (8(xa — X)) | dxydxa..dxy.

i=1 j=1 k=1

(44)
This quantity depends only on integrals over three groups of points x;_;, X;, X; 41,
Xj_1, X}, Xj41 and xz_y, Xz, Xx+1 and their mutual arrangement. To proceed, we fix
some position of x; (as it has been done for MéD) and consider the positions of x;
and x; with respect to it. Using the diagrammatic approach we compute integrals
G, in (44) for each three-point configuration. The corresponding diagrams G P
forr =0, ..., 4 are shown in Fig. 8b. We encounter the following possibilities:

(i) The integral (44) contains terms like G\° = [ [60(x; —x;)0(x; —
xi)dxi dxj = 0,
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(ii) All three points x;, x ;, x; are separate. In such a situation the integrations
over three groups of points are independent, giving for each group % according to
(40). So, we have G{P = [P(1})]® = 5-. All terms of such a type in (43) cancel;

(ii1) Two groups have the common points and the third group is separated from
them. In this case the separated integration over the third group of points gives
(M). The integration over the rest pair of groups gives just the same result as the
contribution to the second central moment. The factor 3 in front of ((M?) — (M)?)
corresponds to three different ways (ij + &, ik + j, jk + i) to ascribe the indices
to these points. Thus, the contributions from the three-points configurations of
such a type and contribution of two-point configurations for (/?) in (43) cancel;

(iv) At least two pairs of groups have common points. Such configurations
give a non-zero contribution. Integrals for such groups G!¢ and corresponding
weights ¢!P are summarized in the Table Il where G, = J, forr =0, 2, 3.

We can split nontrivial (» # 1) three-point configuration (c!P) into the two-
point configuration by deleting of the one-point group in three different ways.

Thus, 3 Y1 ¢!P = Zz=o b,° =111, where b," is the number of the two-point
r#l

configurations of type ¢ obtained as a result of splitting of all possible three-
points configurations. The two-point configurations b!P are enumerated in the
Table II. The contribution of the two-point configurations are not compensated by
an appropriate term from the three-points configurations, so we have to take it into
account manually. So, substituting expansion of (44) into (43), we obtain

130 = (M) — (M) — 3(M) ((M?) — (M%)
4

1 1< 1
§ 1D § 1D
L <C,«Gr — ﬁL) — 3 par bq (Jq — §> (45)

r=0

2
=———L ~—0.0021164L.
945

Table Il. Values of integrals G!° and of the

weights ¢!P (left) for the three-point configura-

tions and values of integrals J!P and weights
b\P (right) for computing piP.

r 0 1 2 3 4
1D 1 2 1 17

G, 0 7 is 3 3is

)P 24 L—37 6 1 6
1D 1 2 1

J 0 5 15 3

b!P 36 18 42 15
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It is worth mentioning that the moments in Egs. (40), (42) and (45), calculated
using the operator technique, coincide with the ones obtained on the basis of exact
combinatorial approach (23).

5. CONDITIONAL PROBABILITY p(/) OF TWO PEAKS
SEPARATED BY DISTANCE /

We aim now at evaluating the probability p(/) of having two peaks separated
by a distance /, under the condition that there are no peaks (i.e. sequences 1 |) on
the interval between these peaks. According to Ref. 24, this probability is given
by

1
pl) = /0 ix Y o). (46)

where the sum is taken over all possible peak-avoiding rise-and-descent patterns of
length / between two peaks, while O(x) denote the O-polynomials corresponding
to each given configuration (see the explanations above).

There are several possible peak-avoiding “rise-and-descent” sequences con-
tributing to such a probability. These sequences are depicted in Fig. 9. The first
peak is located at 0 position, the second peak is located at / position. We have fixed
a descent at 1st position (variable Y) to keep a peak at the Os position (variable X).

ATt
(@) >~ 1 11 .. S S B Y
XY x x; Xi_1X;
ALt ot
(b) /‘Y)‘/ 'x‘] x‘z L L )\CI?I;C]
SR 1 T A O B A KO B
(€) "b—LA 1 1 . L L L
XY x; x; Xin—1 Xim X%

Fig. 9. Rise-and-descent patterns contributing to the conditional probability of having two closest
peaks at distance / apart from each other. Configuration (a) has only one descent between two peaks.
Configuration (b) has two descents following the first peak, i.e. a “through” at x;, and (c) presents
a generalization of (b) over configurations having m descents, (m = 1, 2, ..., 1), after the first peak
which are followed by / — m rises, i.e. a “through” at x,,_1,
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Now, the Q-polynomial associated with the sequence (a) in Fig. 9 has the
following form:

1 X 1 1 1 X]—1
Qa(x)=/ dX/ dY/ dxlf dxz.../ dxl_lf dx;.  (47)
x 0 Y X1 X2 0

Performing the integration over x; in the latter expression, we denote the iterated

integrals over the variables x;, k = 1,2,3...,/ as
1 1 1
M(Y) = / dx; dx; .. / x; dx;. (48)
Y X1 X/—1
Notice now that M; obey the following recursion scheme:
1
M) = [ M0 dx. m(r =v. (49)
Y
Introducing the generating function of the form:
oo
M(Y) =Y M(Y)Z, (50)
1=0
we readily find that it obeys
1
M(Y)—Y:z/ M(X)dX, (51)
Y

and consequently, M; are simply the coefficients in the expansion
= 1
M(Y) = Mz = —[1—(1 - z)exp(z(1 — x))]. (52)
z
1=0

which are given explicitly by
1=y 1=+ _
I +D I+

Hence, the O-polynomial associated with the configuration (a) in Fig. 9 obeys

M(Y) = (+Y)1-Y). (53)

1 X 1 1 X
0“(x) :/ dX/ M_(Y)dY = z_v/ dX/ [(1-Y)"'0-1+71)]ay,
X 0 - Jx 0

(54)
and the contribution of this very configuration to the probability p(/) reads:

1 1 1 X
) = ﬁ/o dx/ dX/O [(1=Y)~'¢—1+7Y)]dY. (55)
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Next, we turn to the contribution coming out of the general configuration
(c) in Fig. 9. The Q-polynomial associated with this configuration of rises and
descents for a fixed m is given by

X1 X2
0°(x,m) = / dX/ dY/ dx1/ dxz/ dxs ..
Xm—2 Xi—1
/ dx,,_ 1/ dxm.../ dx;_ 1/ dx;
Xm—1 X]—2 0
X1 X2
/ dX/ dY/ dxlf d)Cz/ d)C3
Xm—2
/ dxm l/ dxmu-/ Xi— ldxl 1
Xm—1 X]-2
X1 p%)
/ dX/ dY/ dX1/ d)Cz/ d)C3

Xm—2
/ My Gomr) dm_1. (56)
0

Let us note, that Q%(x) = Q°(x, m = 1). Consider next a recursion scheme of the
form

Y

Nah) =2 [ Naa0) X, (57)
0

where Ny(Y) is some arbitrary function ®(Y). Introducing the generating function

oo
N(¥) = Nu(¥)z", (58)

m=0

we get that it obeys
Y
N(Y) - (D(Y):zf N(X) dX. (59)
0

Solution of the latter equation can be readily obtained by standard means and reads
Y dd(X)

dXx
Finally, expanding the rhs of the latter equation in powers of z, we get that N,,(Y)
are given explicitly by

ym dd Y m
Nm<Y)=<b<0)m+/o L

N(Y) = ®(0) exp(zY) + / exp (z(Y _ X))dX. (60)
0

/nm 1
— !

——dX.
(61)

dxX = / q:()o
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Now, we notice that, as a matter of fact, the multiple integral over the variables
Yand x4, k=1,2,...,m — 1 on the rhs of Eq. (56) becomes just the function
N, (Y), if one takes ®(Y) = M;_,,(Y). This implies that

X Y X1 Xm—2
/ dY/ dX] dxz.../ Ml_m(xm_l)dxm_l
0 0 0 0

X m— —m
_ X =Yyl =Yl -—m+ Y)dY‘ 62)
0 (m— DI —m+1)!

Substituting m = 1 we obtain here fOX M;_1dY. Consequently, we find that the
desired probability obeys

_ X =Yyl =r"1l-m+7Y)
p() = /dx/ dX/ [Z gy T Rp— :|dY. (63)

Let us introduce the generating function F(z) = >/, 2! p(I). We can represent
the sum

oo -1 0o 00
o> dfum =ZZ K f (ke + m, m), (64)
1=2 m=1 m=1 k=1
where k =/ — m. Using
oo m—1
w X -—" (X
2" Tm—1 ¢ v, (65)
m=1
and
> 1—Y) 1 1
k4 1) = 1—-)+--7 66
;zu)(k“)! e S Rt (66)
we obtain

e Y)"’”(l—m+Y)j|dy)
(m — DI —m + 1!

B 1 1 X[ o o m(X_Y)m—l k(l—Y)"(k—i—Y))
‘/odx/x dX./o ZZ<Z (m — D )( G )|

[
[e o n( m,m<1_§>_y+§)]dy

(67)
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Hence, the generating function is given by

Foy= 22y 220 Loy by (68)
YT5T 79T T35t Tast Tser” '

Note that the numerical values 12—5 (for [ = 2) and é (for / = 3) correspond to the
values obtained in Ref. 24. In general, we get the following explicit expression

1( 2l+1 2l+2 21+3 )_ l(l—l)(l+2)

= \avo Caryi taen) T ary 0 @

which defines the probability p(/) of finding two peaks separated by the distance
/ with no peaks between these two points for arbitrary /. The function p(/) is
depicted in Fig. 10.

Note also that p(/) in Eq. (69) coincides with the distribution function of the
distance between two “weak” bonds obtained by Derrida and Gardner. ?7

p{)

6. PROBABILITY DISTRIBUTION FUNCTION P(M,L) IN 2D

In this last section we are going to study the statistics of peaks in a two-
dimensional BD landscape /4 (i, j, n) by converting this problem to the analysis of
the distribution of peaks in the associated permutation matrix.

It is convenient to represent the two-dimensional base (i, j), (i,-j =
1,2,3,...,m, m xm = L) as a one-dimensional set with long-ranged corre-
lations. Namely, reading the lattice (7, j) from the left to the right in the line and
line-by-line from top-to-bottom, exactly as an electron beam does to highlight the
image on the TV screen, we can rewrite equations (3) and (4) renaming 4 (i, j, n)
as: h(i, j,n)= h(k,n), where k=1,2,3,...,L. Hence, h(i — 1, j,n)=
h(k—1,n); h(i + 1, j,n)y=h(k+1,n); h(i,j — 1,n) = h(k —m,n); h(i, j +
I,ny=h(k+m,n),wherel <k < L.

0.14
0.12

0.1
0.08
0.06
0.04
0.02

2 4 6 8 10

Fig. 10. Probability of having two peaks being at distance / apart of each other with no peaks inbetween.
It has a maximum at / = 2.
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Given Eq. (3), we can describe the growth of a two-dimensional BD landscape
over the base m x m as a stationary “updating dynamics” inthe L x L permutation
matrix with the uniform distribution on updating events. The uniform “updating
dynamics” on permutations generates the PDF of peaks identical to the PDF
of peaks computed over the ensemble of all L! equally weighted permutations
(compare to the one-dimensional case). Thus, repeating the arguments of the
previous section, we can construct an analogue a two-dimensional PGRW for
permutation matrix with finite-length correlations.

The most significant and the only difference between one-and two-
dimensional models is in the definition of a “peak.” In 1D case, a peak appears at
the position & of the permutation matrix if the corresponding permutation sy, is
larger then the nearest neighboring permutations 7;_; and ;.. In 2D case, & is
a peak if and only if 77 is larger than my_y, 7g11, Tg—p and .y, simultaneously.
In the next subsection we generalize the operator formalism over the 2D case and
calculate the PDF of peaks for the uniform BD process in two dimensions.

6.1. Central Moments of the Probability Distribution Function in 2D

To obtain the limiting (L — o0) Probability Distribution Function P(M, L)
of having exactly M peaks on a two-dimensional square base L = m x m, we
calculate the first three central moments of the distribution function and then con-
struct the corresponding Edgeworth series (cumulant expansion). > This enables
us: a) to show that in the limit L — oo the function P(M, L) converges to the
Gaussian distribution, and b) to present an explicit expression for P(M, L) in this
limit.

The total number of points for 2D system is L = m?. Applying to the 2D
case the same arguments as in 1D case, we define

Al

= 0(x;, j — x;_1,;) for the “northern” neighbor

A;7 = 0(x;,; — x; j41) for the “western” neighbor

(70)
A[{j = 6(x;,; — xi41,;) for the “southern” neighbor
A =0(x;; — x;,j-1) for the “eastern” neighbor,
(compare (70) to (38)).
Using the operator formalism we obtain for the first central moment
1 1 m m
/JL%D = f / |:Z Z Ai]Al‘;Ali]Ali:| dX1.1 dxl,z ce dxm,m—l d-xm,m
0 0 : :
i=1 j=I1 (71)

1 1
1
= L/ / AIjArinin(,—j dxi—1jdx; jr1dXip jdx; j1dx; j = gL.
0 0

As in 1D, all terms in (71) are identical and independent.
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Table lll. Values of integrals J2° and of the
weights 42" for computing u3P.

BT R
a® 4 N-13 4 4

— L

2. The same method is used for computing the second central moment. We
define dx; ; = dx;_1 j dx; j41dxiy1,; dx; j—1 dx; ; for integration over the point
x;,j and its 4 neighbors to make the expressions more compact. Instead of summing
over i, j, we fix the position of the first point x; ; and perform the summation over
all possible positions of x4 ; with respect to x; ;. Then we enumerate all different
integrals J?P and compute the corresponding weights a2°. The configurations
which contribute to .],2D are shown in Fig. 11a,b. As in 1D case, the §-functions
8(xq.p — Xc,q) cut off the diagrams with coinciding points (see the explanation
after (41)).

The values of integrals and their weights a?P are collected in Table III.

The total number of integrals is Y 7_, 2P = L = m?. The contribution from
the integral J2P is exactly canceled by the term — 2 = coming from two independent
points:

2D
Jr

S oAl <« — Al <«
ALAT AL A AL ALAL AT {8(s — xed))

m m m m
=1

u=/f 33

0 i=1 j=1 k=1 [

1
X dxydxa ... dxy, — —L*
' 25

m m

1
1
P
:LZZ //(; ALNTAL AT AL AGAL A {8(as — Xea)} dXi
0

k=1 [=1

1
dxy — —L*?
X Xk'[ 25
4 1 13
=1L Wy = L. 72
; [a' T T2 225 (72)

3. For computation of the third moment in 2D we use again the same method as
in 1D. Namely, we fix the first point x; ; and enumerate all possible configurations
of three points. Different types of three-points configurations are depicted in
Fig. 11b). Other configurations with the same contribution G?P and the same
topologies but slightly different conformations are not shown in the figure. The
integrals G?P and J2P have the same values for 7 = 0, 2, 3, 4. In the configuration
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(a) 2-point correlations in 2D (b) 3-point correlations in 2D

Gealenlen

P

“rrr 1
J® Xepj X Xiry Xeps g Xiors
1
x'/—r X

Fig. 11. Basic diagrams and corresponding integrals: (a) JrZD for the computation of }L%D; (b) GfD
for the computation of /L%D.

G all three points coincide, so G3° = 1. The most general form of the integral
G?P is as follows

1 1
G»® =/0 /0 ALATAL AT ALAGAL AL ALLAT AL AL

X A{8(Xa,p — Xe,a)}dX; jAXp 1A X 0, (73)

where dx; ; = dx;_y ;dx; j_1 dx;11; dx; ;41 dx; ; and the §-functions in (73) cut off
the coinciding points. For example, if in some configuration the points x; ;4 and
x¢,—1 coincide, then we include the function 8(x;;—; — x; ;41) etc.

It is possible to simplify integrals of such a type by changing the limits of
integration. For example, [, [ A/ jdxipdxi ;= ) xi.;dx; ;. In such a way the
integral G2" can be expressed as follows:

2D 1 3 i 1 2 e
G5 2/ dxi,j X,-,j‘/. dxi.j-H / dxi.j+2 xi,j+2_/ dxi,j+3
0 0 X 0

i+l

oy 29
X xi“/.+4 dxi,j+4 = M (74)

Xij+3
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Table IV. Three-point configurations for computing p2°: integrals G2°
and weights ¢ (left) and integrals J2° and weights b2 (right).

r 0 1 2 3 4 5 6 7 8
2D 1 2 1 1 29 121 7 13

G; 0 VA I 5 725 10800 350 990

D 168 N-313 12 12 1 36 48 12 24
2D 1 2 1 1

J; 0 % 5 w3

P 216 216 252 216 39

The values of integrals G2P — G2P are collected in the Table IV.

The symmetry of configurations defines the weights ¢,. For example, the
diagram of the integral G2P in Fig. 11b has two orientations along vertical and
horizontal lines. Thus the total weight of the integral GZP is ¢2° = 36.

The values of ¢, are given in the Table IV. Totally there are sz.;? ¢ =313

different nontrivial configurations. We can split each of the nontrivial three-points
configuration as it has been done in 1D case. There are three ways to do it. Values
of b, of the corresponding two-point configurations are shown in the Table IV
with the total number Y"_ 5*® = 939 of such configurations. Now it is possible to
compute the third moment

8 4

1 1 1

m_ g b P B A p (o L

s 2:; YT 105 5; NPT
512

= — -~ L ~0.015913L. (75)
32175

6.2. The Distribution Function P(M,L) in the Limit L - oo

The cumulants «?° of P(M, L) are equal to the central moments, u3°, (i =
1,2, 3), where

13
PP == L
225
512 (76)
2D
-2
= 33175

Introducing the normalized deviation,x = M — u3P /o, we can write the normalized
probability distribution p(x, L) = P (1}® + xo, L) ina form of the Edgeworth series
(cumulant expansion)

plx, L) ~ g(x) (1 +%f(x)+o<%)), (77)
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POL), L=100 -
05 PiL), L=256 rart 1.4
g(x) - Gaussian function
04 R
3 &
~ 03 \E ;
2 ~
= o2 £
0.8 y ,
£ POL)/g(x), L=100 -
0.1 ¥ POLY/G(X), L=256 +-rbns
0.6 faf 1+1/10 f(x) ]
0 IS
-4 4 4 3 2 -1 0 1 2 3 4
* X

Fig. 12. (a) Results of numerical simulation of p(x, L) for L = 100, 256: (a) comparison of p(x, L)
with the Gaussian function g(x); (b) comparison of the function p(x, L)/g(x) with 1 + % f(x).

where g(x) is the Gaussian function g(x) = 1/v/27e /2, and f(x) is defined by
w3P and p2P (see Ref. 25 for details)

N kP 1,
fx) = ng(x —3x) (78)
2
Substituting (76) in (78), we get
512 (225\*1 ,
SO = 5517 (F) (0 =), (79)

Let us emphasize that f(x) does not depend on L, as one may readily check
by substituting exact results obtained for the cumulants to Eq. (78). To verify
the expression in (79), we have performed the numerical simulations for the
discrete 2D permutation-generated model with the periodic boundary conditions
and have computed the distribution function p(x, L) numerically. In Fig. 12a we
present the data of the numerical simulations for p(x, L) and compare it against
the Gaussian function g(x) for system sizes L = 100 and 256. Furthermore, in Fig.
12b we plot the ratio % as the function of x, which shows that the deviation
of the numerically computed function p(x, L) from the Gaussian function g(x) is
actually very small.

One clearly sees that for L — oo the normalized probability distribution
function p(x, L) converges to the Gaussian function g(x).

7. CONCLUSION

To conclude, we have studied the probability distribution function P(M, L)
of the number of local peaks in one- and two-dimensional surfaces obtained in a
standard model of next-nearest-neighbor ballistic deposition process. Our analysis
was based on two central results:

(i) A proof, presented in this paper, of the fact that a ballistic deposition
process in the steady state can be formulated exactly in terms of “rise-and-descent”
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patterns in the ensemble of random permutation matrices, which made it possible
to interpret the BD model in terms of permutations of the set 1,2, 3, ..., L, where
L is the number of lattice sites and the numbers drawn at random from this set
determine local heights of the surface.

(il) An observation made in Ref. 24, that the “rise-and-descent” patterns
can be treated efficiently using a recently proposed algorithm of a Permutation
Generated Random Walk.

In one-dimensional case we have found a closed-form expression (28) for
the generating series W(s, L) = L! > },_,s" ™ P(M, L) of the distribution function
P(M, L) of peaks in a bounding box of size L. Inverting this expression, we got an
exact and asymptotic forms of P(M, L).

Besides, in one-dimension we calculated the probability p(/) of having two
peaks separated by a distance /, under the condition that there are no peaks in the
interval between these two peaks. The function p(/) is given by expression (69).

For two-dimensional case, we reformulated the BD process in terms of an
“updating dynamics” on permutations with certain finite-range correlations. Using
this approach, we extended the operator formalism of Ref. 24, to such correlated
permutations and evaluated three first central moments of the PDF. Then, we
have obtained P(M, L) in the asymptotic limit L — oo using expansions in the
Edgeworth series®—see (77)—(79). We have shown that in 2D the PDF also
converges to a Gaussian function as L — oo.

APPENDIX A

Let us exploit the relation between the generating function of peaks,

[o¢]
W(s,L)y=L!Y s""'P(M, L)
M=0

and Poly-log function (see Ref. 21, for details):

1 (1 + t)L+l "
5(1 P w ((1 TR ) Zl(2m)L+’ (A.1)

(1—v/T1=5)? .
s N

Introducing s = rewrite (A.1) taking into account that r =

4
(1+41)2°

W(S L) _ 2(1 )(L+1)/2 Z(z )L+1

m=1

[(1 VT —s) } A2)
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Use now the expansions

L+3)\ (—1y ,
(1—s)E+2 =21 ( ) ‘ —s7;
) &)

(A3)
S\~ (g +2)) S\J
1—-VT=s)¥ =q(= 2727 (2
( $) q(z) J_X:(;j!r(q +j+1) <4)
Define now
. _ (=1
L) = 5T
b(m, L) = (2m)-+12-2m (A4)
etm. L) = jramiim?
and rewrite W(s, L) in (A.2) as follows
Wi(s,L)=2T (Li_”) ia(z’, L)s’ i b(m, L)s™ ic(m, J)s? (A.5)
2 i=0 m=1 Jj=0

After resummation of (A.5) we arrive at the following expression:

L+3 o) M 1
W(s,L)=2F< 5 )Z|:Za(M—l,L)Zb(m,L)c(m,l—m)j|sM (A.6)

M=0 L I=1 m=1

Hence, by definition of the generating series, we get

() ¢ (—M- ! Qm)L+!
PM, L) = L I;(M—z)!r(%—MH) Z(l—m)!r(m +1+1)

m=1

qL+2 M ( L+1 ! L+1

_ M- T2 m
L Z( D M2—1>Z(Z—m)!(l+m)!

=1 m=1
(A7)
what gives the desired final expression for PDF P(M, L) in one dimension.
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